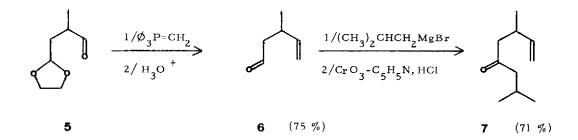
1,4 - DIALDEHYDE MONOACETALS : A NEW SYNTHESIS OF DIHYDROTAGETONE

J.F. Le Borgne, Th. Cuvigny, M. Larchevêque and H. Normant Laboratoire de Synthèse Organique, Laboratoire associé au C.N.R.S. n° 239 Université Pierre et Marie Curie, tour 44-45, 4, place Jussieu 75230 Paris Cédex 05

(Received in UK 1 March 1976; accepted for publication 15 March 1976)

Bi-functional compounds are specially attractive in organic synthesis when, by protecting one function, it is possible to change the first without modifying the second. We report in this paper a direct and fast synthesis of such compounds : the 1, 4-dialdehyde monoacetals. We have previously shown that the carbanions 2_{are} easily available from aldimines 1 by reacting them with "activated lithium amides" (1, 2).


$$\begin{array}{c} R_{1} \\ R_{2} \\ R_{3} \\$$

Though the bromine in an α position to an acetal is not very reactive (3), it is possible in HMPT to substitute it even at low temperature. The reaction of the carbanion 2 with an α -bromacetal or dioxolane affords the acetal-imine 3 in good yields. A <u>selective hydrolysis</u> can be obtained by using a solution of tartaric acid at 0°C and the products 4 are isolated.

R	R ₂	R	B.p. °C/mm Hg	Yield %	R ₁	R ₂	R	B.p. °C/mm Hg	Yield %
CH ₃	н	-CH2-	40/0,05	79	nC4H9	н	с ₂ н ₅	63/0, 03	61
с ₂ н ₅	н	-CH2-	49/0,05	83	nC ₆ H ₁₃	Н	-CH	92/0,05	81
(сн ₃) ₂ сн	н	-CH2-	60/0,05	68	CH ₃	сн ₃	C ₂ H ₅	40/0,01	63
^{nC} 4 ^H 9	н	-CH ₂ -	69/0,01	85	C ₂ H ₅	с ₂ н ₅	-CH2-	63/0,05	68

1,4 - Dialdehyde monoacetals

To a stirred solution of diethylamide (0, 06 mol) in HMPT is added a solution of addimine (0, 06 mol) in THF at - 60° C. The mixture is stirred and warmed up to - 10° C within two hours. The bromacetal (0, 05 mol) in THF is then added at - 60° C; the mixture is allowed to warm up and hydrolysed at 0° C by stirring for five hours with aqueous tartaric acid. To illustrate our method we have prepared dihydrotagetone **7**. Several syntheses of this product have been reported (4)

The dioxolane aldehyde **5** prepared from propionaldimine by our method is reacted with a Wittig reagent to afford the aldehyde **6** after acid hydrolysis (bp 110° C/760 mm Hg). This compound is then condensed with isobutyl magnesium bromide ; the crude product is oxidized with pyridinium chlorochromate (5) and furnishes dihydrotagetone **7** (bp 82°C/15 mm Hg). The overal yield from propanal is 42 %. This attractive synthesis of dihydrotagetone outlines the synthetic value of 1, 4-dialdehyde monoacetals. We thank D. G. R. S. T. for their financial support (contrat 74-7-0940).

References and Notes :

- Th. Cuvigny and H. Normant, Bull. Soc. Chim. Fr. 1970, 3976;
 Th. Cuvigny, J.F. Le Borgne, M. Larchevêque and H. Normant, J. Organometal. chem. 70 C 5 1974, C.R. Acad. Sci. Paris C, 279, 335 1974
- 2 The "activated dialkylamides" are directly prepared according to H. Normant and Th. Cuvigny, Organometal chem. Syn. <u>1</u> 233 and 237 1972
- 3 G. Stork, J.O. Gardner, R.K. Boeckman Jr and K.A. Parker, J. Am. chem. Soc. <u>95</u> 2014 1973
- 4 B. Lefebvre, J.P. Le Roux, J. Kossanyi and J.J. Basselier, C.R. Acad. Sci. Paris C 277 1049 1973 and references therein.
- 5 E.J. Corey and J. W. Suggs, Tetrahedron Letters 2647, 1975